


# Ali Mirzakhalili, P.E. Stationary and Area Source Committee Update



### Outline

Update on Committee efforts

Update on completing Charge

Moving Forward- Next steps
 for the SAS Committee





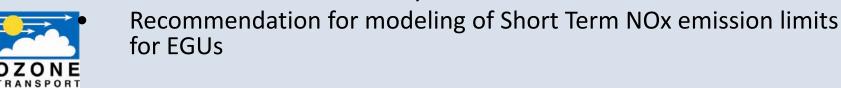
## Charge to the Committee

#### LARGEST CONTRIBUTOR ANALYSIS

Using the most recent emission inventory data available to:

- Identify the largest individuals and groupings of NOx emitters within states where that state contributes at least 1% of the 2008 ozone NAAQS of 75 ppb to OTC states;
- Identify emission sources with the highest short-term emissions of NOx and VOC;
- Evaluate real world achievable NOx emission rates across load ranges to adjust long and short term expectations for emission reductions.
- Develop individual state EGU NOx emission rates achievable, considering reasonable available controls.

# DISTRIBUTED AND EMERGENCY GENERATOR INVENTORY


Obtain information from system operators concerning the location, operation and emissions of all units that participate or plan to participate with the system operator to analyze the air quality impact of these engines and make recommendations for potential control strategies to the Commission.

# Largest Contributor (EGU) Analysis

EGU Workgroup has posted the draft Whitepaper of the EGU Emissions Inventory Analysis for the OTC Modeling Domain for stakeholder comments on the OTC website: <a href="http://www.otcair.org">http://www.otcair.org</a>

# The draft EGU Emissions Inventory Analysis Whitepaper includes:

- Analysis of 2011 and 2012 state level ozone season EGU NOx emissions (tons) and ozone season state average EGU NOx emission rate (lb/mmBtu) data.
- Analysis of Approach 1 NOx controls and EGU retirements
- Analysis of Short Term (Hourly) EGU NOx Emissions 2012
- Analysis of daily EGU NOx emissions during the 2011 Ozone Season including emissions, fuel type, and temperature charts.
- "Coal SCR Scorecard" Analysis 2011 & 2012



# Top 25 NOx Emitters for 2011 Ozone Season

|       |                                      |             |         | Avg. NOx Rate |            |
|-------|--------------------------------------|-------------|---------|---------------|------------|
| State | Facility Name                        | Facility ID | Unit ID | (lb/MMBtu)    | NOx (tons) |
| IN    | Rockport                             | 6166        | MB2     | 0.2431        | 5,339      |
| PA    | Keystone                             | 3136        | 2       | 0.3630        | 5,044      |
| PA    | Keystone                             | 3136        | 1       | 0.3717        | 4,855      |
| PA    | Hatfield's Ferry Power Station       | 3179        | 1       | 0.4923        | 4,288      |
| PA    | Conemaugh                            | 3118        | 2       | 0.3170        | 4,086      |
| PA    | Hatfield's Ferry Power Station       | 3179        | 2       | 0.4746        | 3,984      |
| AR    | White Bluff                          | 6009        | 1       | 0.2755        | 3,956      |
| PA    | Conemaugh                            | 3118        | 1       | 0.3411        | 3,890      |
| PA    | Brunner Island                       | 3140        | 3       | 0.3760        | 3,834      |
| AR    | White Bluff                          | 6009        | 2       | 0.2798        | 3,794      |
| IN    | Rockport                             | 6166        | MB1     | 0.2372        | 3,616      |
| ОН    | W H Zimmer Generating Station        | 6019        | 1       | 0.2189        | 3,559      |
| AR    | Independence                         | 6641        | 1       | 0.2591        | 3,302      |
| PA    | Montour                              | 3149        | 1       | 0.3323        | 3,298      |
| PA    | Montour                              | 3149        | 2       | 0.3159        | 3,132      |
| PA    | Hatfield's Ferry Power Station       | 3179        | 3       | 0.4320        | 2,848      |
| MI    | Monroe                               | 1733        | 2       | 0.2851        | 2,811      |
| GA    | Harllee Branch                       | 709         | 4       | 0.4076        | 2,806      |
| WV    | Fort Martin Power Station            | 3943        | 1       | 0.3514        | 2,660      |
| NY    | Lafarge Building Materials, Inc.     | 880044      | 41000   |               | 2,647      |
| AR    | Independence                         | 6641        | 2       | 0.2270        | 2,463      |
| KY    | Paradise                             | 1378        | 3       | 0.3865        | 2,431      |
| NY    | Somerset Operating Company (Kintigh) | 6082        | 1       | 0.2965        | 2,347      |
| ОН    | Avon Lake Power Plant                | 2836        | 12      | 0.4000        | 2,328      |
| ОН    | Eastlake                             | 2837        | 5       | 0.2621        | 2,323      |



- •Red text indicates units retired or scheduled for retirement
- •Units with a pink highlight in the Unit ID column possess SCR controls

# Top 25 NOx Emitters for 2012 Ozone Season

|       |                                |             |         | Avg. NOx Rate |            |
|-------|--------------------------------|-------------|---------|---------------|------------|
| State | Facility Name                  | Facility ID | Unit ID | (lb/MMBtu)    | NOx (tons) |
| MO    | New Madrid Power Plant         | 2167        | 1       | 0.627         | 5,786      |
| IN    | Rockport                       | 6166        | MB1     | 0.221         | 5,001      |
| PA    | Keystone                       | 3136        | 1       | 0.365         | 4,661      |
| IN    | Rockport                       | 6166        | MB2     | 0.224         | 4,215      |
| MO    | New Madrid Power Plant         | 2167        | 2       | 0.505         | 4,134      |
| PA    | Conemaugh                      | 3118        | 1       | 0.320         | 3,909      |
| PA    | Montour                        | 3149        | 2       | 0.414         | 3,794      |
| PA    | Conemaugh                      | 3118        | 2       | 0.300         | 3,789      |
| PA    | Keystone                       | 3136        | 2       | 0.343         | 3,774      |
| PA    | Hatfield's Ferry Power Station | 3179        | 3       | 0.509         | 3,677      |
| PA    | Hatfield's Ferry Power Station | 3179        | 1       | 0.486         | 3,601      |
| PA    | Hatfield's Ferry Power Station | 3179        | 2       | 0.520         | 3,589      |
| PA    | Montour                        | 3149        | 1       | 0.402         | 3,543      |
| AR    | White Bluff                    | 6009        | 1       | 0.278         | 3,504      |
| AR    | White Bluff                    | 6009        | 2       | 0.246         | 3,383      |
| MO    | Thomas Hill Energy Center      | 2168        | MB2     | 0.684         | 3,236      |
| AR    | Independence                   | 6641        | 2       | 0.205         | 2,816      |
| WV    | Fort Martin Power Station      | 3943        | 1       | 0.319         | 2,730      |
| AL    | E C Gaston                     | 26          | 5       | 0.203         | 2,656      |
| WV    | Harrison Power Station         | 3944        | 3       | 0.308         | 2,628      |
| PA    | Brunner Island                 | 3140        | 3       | 0.346         | 2,601      |
| WV    | Harrison Power Station         | 3944        | 1       | 0.313         | 2,569      |
| MI    | Monroe                         | 1733        | 2       | 0.259         | 2,536      |
| MI    | Monroe                         | 1733        | 1       | 0.247         | 2,517      |
| ОН    | Killen Station                 | 6031        | 2       | 0.351         | 2,426      |

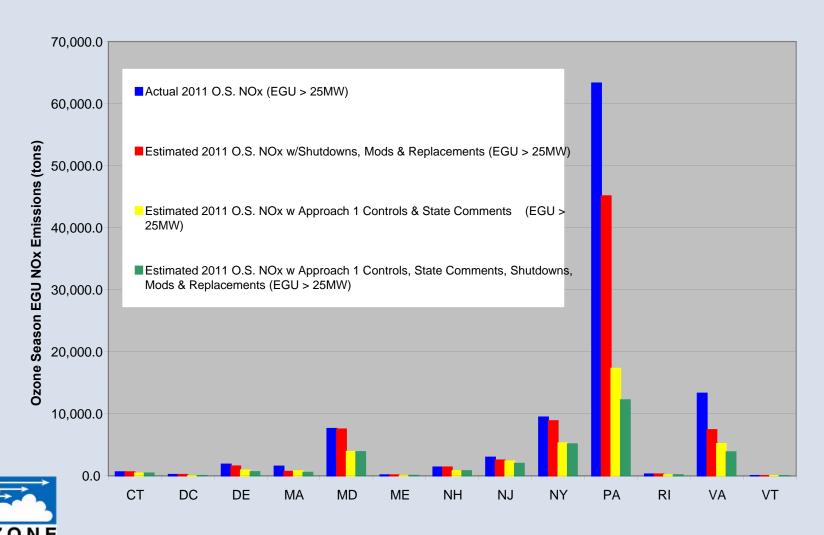


- •Red text indicates units retired or scheduled for retirement
- •Units with a pink highlight in the Unit ID column possess SCR controls

# Potential EGU NOx Reductions from Retirements & Approach 1 Controls

# Results of Approach 1 NOx Controls & EGU Retirements Inventory Analysis

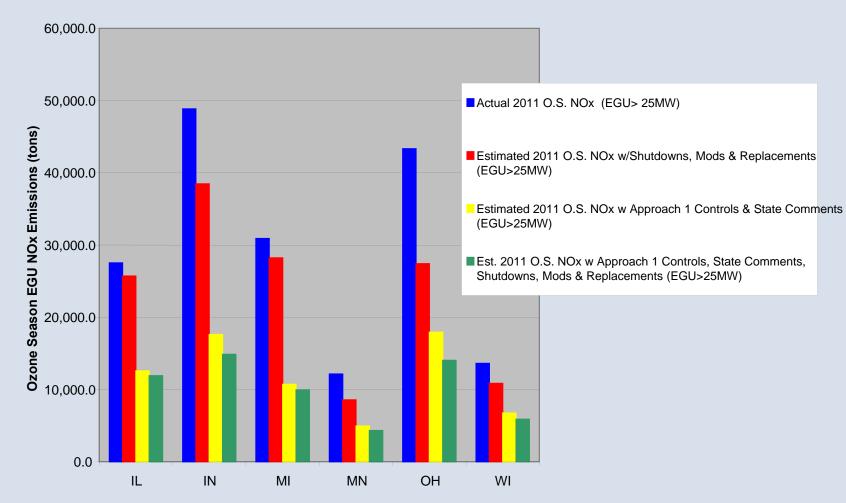
Approach 1 applied different levels of NOx controls to EGUs in the CAMD database depending on unit type, unit size & primary fuel type


#### EGU retirements list

- Used multiple data sources DOE-EIA Electric Power Monthly, newspapers, company press releases, integrated operating plans, state air agency data, etc.
- Intended to cover only coal-fired EGUs retirements but current draft includes some EGUs combusting other types of fuel



### Estimated Impact of Coal-fired EGU Retirements & Approach 1 NOx Controls on Ozone Season EGU NOx Emissions


OTC States
DRAFT

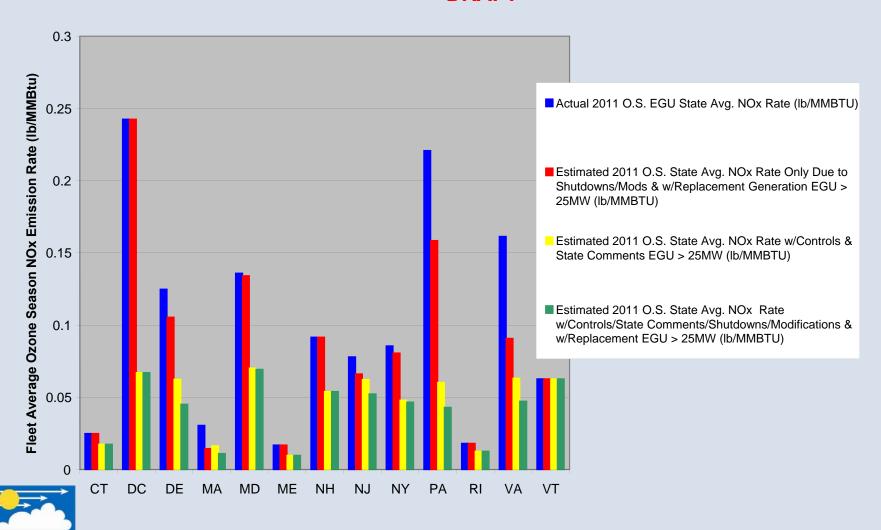


### Estimated Impact of Coal-fired EGU Retirements & Approach 1 NOx Controls on Ozone Season EGU NOx Emissions

**LADCO States** 

#### **DRAFT**






#### Estimated Impact of Coal-fired EGU Retirements & Approach 1 NOx Controls

on Ozone Season Fleet Average NOx Emission Rates

**OTC States** 

#### **DRAFT**




#### **Estimate Impact of Coal-fired EGU Retirements & Approach 1 NOx Controls**

#### on Ozone Season Fleet Average EGU NOx Emission Rates

**LADCO States** 

#### **DRAFT**





# State Rules Summary Short Term NOx Limits for EGU Boilers & Turbines

- These Short Term NOx Limits listed as "Current Thinking" not intended to reflect technological edge of NOx control capability, but rather to represent NOx control retrofit capability for much of the EGU Industry
  - Alternative compliance means may be necessary for some existing units that may not be able to achieve these NOx rate limits with RACT controls
- State rules included in analysis are from CT, DE, NH, NJ, NY & WI
   EGU boiler NOx limits in state rules 24 hr avg. (rolling avg. or calendar day avg.)
- •EGU turbine NOx limits in state rules varied from state to state (1hr avg., 24 hr avg, 30 day rolling avg.)
- •For EGU boilers assumed 0.1 lb/MM Btu ≈ 1.0 lb/MWh



# State Rules Summary (CT, DE, NH, NJ, NY, & WI) Short Term NOx Limits for EGU Boilers

| Unit<br>Type           | Heat Input<br>(MM<br>Btu/hr) | Boiler Type           | Current<br>Thinking<br>(lb/MMBtu)<br>24 hr. avg. | Range<br>(Ib/MMBtu)<br>24 hr. avg. | Range<br>(Ib/MWh) |
|------------------------|------------------------------|-----------------------|--------------------------------------------------|------------------------------------|-------------------|
| Boiler –<br>Solid Fuel | HI≥ 1000                     | Arch, Cell or<br>CFB  | 0.125                                            | 0.125 - 0.150                      | 1.25 - 1.50       |
|                        |                              | Cyclone<br>Dry Bottom | 0.150                                            | 0.125 - 0.150                      | 1.25 - 1.50       |
|                        |                              | Cyclone<br>Wet Bottom |                                                  | 0.125 - 1.40                       | 1.25 - 14.00      |
|                        |                              | Stoker                | 0.150                                            | 0.08 - 0.30                        | 0.8 - 3.00        |
|                        |                              | Tangential            | 0.125                                            | 0.12 - 0.38                        | 1.2 - 3.80        |
|                        |                              | Wall                  | 0.125                                            | 0.12 - 0.50                        | 1.2 – 5.00        |

# State Rules Summary (Cont'd) (CT, DE, NH, NJ, NY, & WI) Short Term NOx Limits for EGU Boilers

| Unit<br>Type | Heat Input<br>(MM<br>Btu/hr) | Boiler Type  | Current<br>Thinking<br>(lb/MMBtu)<br>24 hr. avg. | Range<br>(Ib/MMBtu)<br>24 hr. avg. | Range<br>(Ib/MWh) |
|--------------|------------------------------|--------------|--------------------------------------------------|------------------------------------|-------------------|
| Boiler -     | HI<1000                      |              |                                                  |                                    |                   |
| Solid Fuel   |                              | Arch or Cell | <u>0.150</u>                                     | <u>0.125 - 0.150</u>               | <u>1.25 - 1.5</u> |
|              |                              | CFB          | 0.125                                            | 0.125 - 0.150                      | 1.25 - 1.5        |
|              |                              | Cyclone      |                                                  |                                    |                   |
|              |                              | Dry Bottom   | 0.150                                            | 0.125 - 0.150                      | 1.25 - 1.5        |
|              |                              | Cyclone      |                                                  |                                    |                   |
|              |                              | Wet Bottom   |                                                  | 0.20 - 0.92                        | 2.0 - 9.2         |
|              |                              |              |                                                  |                                    |                   |
|              |                              | Stoker       | 0.150                                            | 0.125 - 0.30                       | 1.25 - 3.0        |
|              |                              |              |                                                  |                                    |                   |
|              |                              | Tangential   | 0.150                                            | 0.120 - 0.38                       | 1.2 - 3.8         |
|              |                              |              |                                                  |                                    |                   |
|              |                              | Wall         | 0.150                                            | 0.120 - 0.50                       | 1.2 - 5.0         |

# State Rules Summary (Cont'd) (CT, DE, NH, NJ, NY, & WI) Short Term NOx Limits for EGU Boilers

| Unit Type                     | Heat Input<br>(MM Btu/hr) | Boiler<br>Type | Current<br>Thinking<br>(lb/MMBtu)<br>24 hr. avg. | Range<br>(Ib/MMBtu)<br>24 hr. avg. | Range<br>(lb/MWh) |
|-------------------------------|---------------------------|----------------|--------------------------------------------------|------------------------------------|-------------------|
| Boiler -<br>Gas               | All                       | AII            | 0.125                                            | 0.08 - 0.125                       | 0.8 - 1.25        |
| Boiler -<br>Distillate<br>Oil | All                       | All            | 0.125                                            | 0.125 - 0.15                       | 1.25 - 1.5        |
| Boiler –<br>Residual<br>Oil   | All                       | All            | 0.150                                            | 0.125 - 0.20                       | 1.25 - 2.0        |

# State Rules Summary (Cont'd) (CT, DE, NH, NJ, NY, & WI) Short Term NOx Limits for EGU Turbines

| Unit Type                         | Heat Input<br>(MM Btu/hr) | Turbine<br>Type   | Current<br>Thinking<br>(ppmvd@15%O <sub>2</sub> ) | Range<br>(ppmvd@15%O <sub>2</sub> ) | Range<br>(lb/MWh) |
|-----------------------------------|---------------------------|-------------------|---------------------------------------------------|-------------------------------------|-------------------|
| Combustion<br>Turbine<br>Gas Fuel | AII                       | Simple<br>Cycle   | 25                                                | 25 - 55                             | 1.0 - 2.2         |
| Combustion<br>Turbine<br>Gas Fuel | AII                       | Combined<br>Cycle | 25                                                | 25 - 43.3                           | 0.75 - 1.3        |
| Combustion<br>Turbine<br>Oil Fuel | AII                       | Simple<br>Cycle   | 42                                                | 42 - 100                            | 1.6 - 3.81        |
| Combustion<br>Turbine<br>Oil Fuel | AII                       | Combined<br>Cycle | 42                                                | 42 - 88                             | 1.2 - 2.51        |

### NEXT STEPS FOR EGU SUBGROUP

- •Finalize OTC EGU Emissions Inventory Analysis Whitepaper
- Workgroup review of results from preliminary ERTAC model runs on NOx reductions if Approach 1 controls were applied and Ozone benefits from NOx reductions due to EGU retirements
  - Prepare data for ERTAC model run on NOx reductions if Short Term NOx limits were applied



# **EMF Project**

#### What are EMF and CoST?

- EMF is a USEPA tool to manage and quality assure emission inventories
- **CoST** works with EMF inventories to model the effect and cost of control strategies for point, area, and mobile sources.

### Why implement a regional EMF and CoST? – In-house capability:

- Annual inventory projection
- Analyze effectiveness and cost of strategies
- Project base year point & area emissions for SIP quality modeling
- Prepare SMOKE-ready input files for multiple years



### EMF IS A BOX FOR INVENTORIES

**Easy access to inventories - database** 

**Inventory management tools:** 

- Inventory summary
- Plot sources on maps
- Quality assurance & documentation
- Analysis (HEDD, Compare etc)
- Projection to future years
- Cost and impact of control strategies (CoST Tool)
- Convert to modeling files
- Vary the time step of inventories (from annual to daily, seasonal)



# Where are we right now?

- DONE MARAMA & OTC provided funding.
- DONE EMF set up on Amazon Cloud.
- Underway MARAMA uploads 2007/2011/2018/2020 datasets
- Underway Developing growth & control factors through 2035
- Underway Seven training webinars for members
- Next step EMF code modification to vary the time step of inventories (from annual to daily, episodic or seasonal)



### How are Sectors Stored in EMF

- EGU ERTAC EGU summarized to daily
- Nonroad Monthly
- Point, Area, MAR Annual
- Onroad Summarized to daily



### Distributed and Emergency Generator Inventory

 OTC pursuing strategy of using state authority to gather information on DR engines

•OTC looking into how to account for Demand Response emissions in modeling scerios





# Other SAS Committee Updates

### Consumer Products Rule

- OTC Sent EPA a request to adopt the OTC Consumer Products Model Rule as a National Rule
  - Available at <a href="http://www.otcair.org">http://www.otcair.org</a>

### AIM

 Beginning process to develop a package to present to EPA asking for the adoption of the OTC AIM Model Rule as a National Rule.

### Vapor Recovery

- Continue to look at ways to improve Stage I
- Looking at Low Permeation Hoses, Dripless Nozzles, and Pressure Monitoring and Management



# Next Steps for the Committee

- Continue to evaluate EGU NOx real world emission data including daily EGU NOx emissions during ozone season episodes and HEDD days
- Use Largest Contributor analyses in ERTAC EGU modeling
- Look at ICI Boiler Emissions,
- Recommend using individual state authorities to collect data from demand response units
- Continue developing the AIM model rule to send to EPA.
- Continue to evaluate Vapor Recovery strategy options.



# Questions?





### Questions for Stakeholders

- 1. Is there a minimum allowance price under CAIR that would serve as the right signal for running controls i.e. at what price would it make sense to run the installed controls?
- 2. How can daily or shorter term performance standards and seasonal emission trading work together?
- 3. What regulatory or non-regulatory signals are necessary to reduce the excessive start-up/shutdown cycling of the units that we are observing?
- 4. How could we design a trading program to assure necessary emission reductions on all days, including high electric demand days?
- 5. How can a system wide average for a company's units within a state be provided to optimally use units in close proximity and meet a RACT rate?